Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons
نویسندگان
چکیده
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.
منابع مشابه
Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum
Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1, losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, w...
متن کاملNonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses.
Nonhost resistance protects plants against attack by the vast majority of potential pathogens, including phytopathogenic fungi. Despite its high biological importance, the molecular architecture of nonhost resistance has remained largely unexplored. Here, we describe the transcriptional responses of one particular genotype of barley (Hordeum vulgare subsp. vulgare 'Ingrid') to three different p...
متن کاملHigh diversity of genes for nonhost resistance of barley to heterologous rust fungi.
Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley-Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping populations by crossing the line SusPtrit,...
متن کاملProteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance.
In plants, disease resistance mediated by the gene-for-gene mechanism involves the recognition of specific effector molecules produced by the pathogen either directly or indirectly by the resistance-gene products. This recognition triggers a series of signals, thereby serving as a molecular switch in regulating defense mechanisms by the plants. To understand the mechanism of action of the barle...
متن کاملIdentification of genetic resources of field resistance to barley leaf rust in local germplasm of cultivated barley
The barley leaf rust has been important in recent years in Iran. In order to identify the genetic resources of resistance to this disease, 207 Iranian barley landraces were studied. The germplasms were investigated at the field of Iraqi-Mahalleh research station in Gorgan as the disease hotspot under natural incidence over three years. The results showed that four genotypes including KC18638 an...
متن کامل